Homework 2

(Due date: February 1st)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 PTS)

• Calculate the result of the additions and subtractions for the following fixed-point numbers.

	UNSI	GNED	SIGNED		
	1.1011010 + 1.00101 - 0.010101 0.0000111		10.001 +	0.011 - 1.1011101	
			1.001101		
	10.1101 + 1100.1 +		1001.101 -	101.0001 +	
	1.1001 0.100101		111.10001	1.1001001	

PROBLEM 2 (18 PTS)

Multiply the following signed fixed-point numbers:

10.011 ×	10.1101 ×	0111.111 ×						
0.110101	01.10001	10.011011						

• Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

101.1001 ÷	11.011 ÷	0.101010 ÷
1.0101	1.10111	101.0101

PROBLEM 3 (10 PTS)

- We want to represent numbers between -214.9 and 256.7. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (5 pts).
- Represent these numbers in Fixed Point Arithmetic (signed numbers). Select the minimum number of bits in each case.

 -128.625
 -231.3125
 112.125

PROBLEM 4 (12 PTS)

Complete the table for the following fixed point formats (signed numbers):

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
7	5				
12	4				
17	7				

• Complete the table for these floating point formats (which resemble the IEEE-754 standard). Only consider ordinary numbers.

Exponent bits (E)	Significant bits (p)	Min	Max	Range of e	Range of significand
7	8				
8	15				
11	36				

PROBLEM 5 (16 PTS)

• Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.

Single	(32 bits)	Double (64 bits)		
✓ FDEAD360	✓ 803ACBAC	✓ FA09D3784D039800	✓ 7FFBEEFC0FFEEBEE	
✓ 3DE32856	✓ 7FCBEEFE	✓ DECAFC0FEE000000	✓ 800ABBAF25C00000	

PROBLEM 6 (32 PTS)

Calculate the result (provide the 32-bit result) of the following operations with 32-bit floating point numbers. Truncate the
results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure.

\checkmark	40D90000 + C2EAC000	\checkmark	801A8000 - B3CEC000	✓	FACADE80 × 7F800000	✓	800C0000 ÷ 494A0000
~	CF4A8000 + B0A90000	\checkmark	FF800000 - DECAFF00	\checkmark	8B092000 × 0FACE000	\checkmark	49744000 ÷ C0C90000